»-

. -

o . AT

TECHNICAL REPORT
CMU/SEI-97-TR-014
ESC-TR-97-014

AEFz@? M 0o ; wol '
Dismsupen HEET I ”“‘*M
{ gl

Approaches to
Legacy System Evolution

Nelson H. Weiderman
John K. Bergey
Dennis B. Smith

Scott R. Tilley

December 1997

T :
By . .

10080203 362

New Text Document.txt
Downloaded from the Internet Date 3 Feb 1998
This paper was downloaded from the Internet.

Title :Approaches to Legacy System Evolution

Distribution Statement A: Approved for public
release; distribution is unlimited.
POC:Pat Mawby

Date:3 Feb 1998

Downloaded by (name) Pat Mawby

Initials PM

il

Technical Report
CMU/SEI-97-TR-014
ESC-TR-97-014
December 1997

Approaches to Legacy System Evolution

Nelson H. Weiderman
John K. Bergey
Dennis B. Smith

Scott R. Tilley

Reengineering Center
Product Line Systems

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Table of Contents

FaXe g Lo (=T o 1= 1=) R \%
B B (411 oo [¥ T3 1o o PSRN 1
2 Distinguishing Software Maintenance from System Evolutioncccccvvcveevnineeiniennns 5
3 Using an Enterprise Approach for Decision Making........ccccoeevrrinrieniisisinninsieeeesecneeennns 7
4 Developing High-Level System Understanding........cccocceevrneecrnineeerseersse e veeescneee e 11
4.1 COogNitive ASPECEScirceiiiiitiiriceci et s e e e ra e 11
4.2 Developing Support MECNANISITIS ..vvev s eerevereeeeersesesesseeessesesessssseseeeseseseeseeesennes 12
4.3 Maturing the PracliCe.......cccccoiiiiriiiieere ettt nnren e sanne e aeeeeae s e e eean 13
5 Distributed Object Technology and Wrappingcc.ccceerrierecrreesnsneneessseeessssnensssssneens 15
5.1 How Object Technology Provides Leveragecccccccvreiivinennrerecermscessnnnscsaenennns 15
5.2 How Distributed Object Computing Provides Leverage........ccccccveeerveerrccernennerennn. 16
5.3 Using Wrapping and Middleware as Integration Mechanisms...........cccceeevvnverrineennn. 18
5.4 Examples of Successful Legacy EVOIULION..........cccveeriiiriiniiir e cneeee e, 19
6 Net-Centric COMPULING....ccccriiiitiiiirrre et snre s s rae e s s e s v e s ssnn e e e e 21
6.1 What Is Net-Centric Computing?ccouirieiiriieirsccee e errrcr e ssrre e s r e s neeeas 21
6.2 How Net-Centric Computing Provides Leverage.........ccoevevvrvvereviiriiiessscnenesseccnenens 22
6.3 Examples of Successful Use of Net-Centric Computingcccecceveeercceernnnennenens 23
7 Summary and CONCIUSIONS.....cc.cvcuierrrrerrecnresserrrisirersesessresesseesssssseessssseeseasssnsressssses 25
References.......oeeeeeeeeveenns eteteeeteeeaeeteaeteterr e rebe ittt etebeae st b ers et et eseae s eae e s raseanrerens 27

CMU/SEI-97-TR-014 i

CMU/SEI-97-TR-014

List of Figures

Figure 1: Conceptual Value of Software ASSEtScccccvvrveeiiicineicciire e e 3

Figure 2: A Framework for the Disciplined Evolution of Legacy Systems

Figure 3: The Distributed Object Computing Paradigm

..

CMU/SEI-97-TR-014

™

CMU/SEI-97-TR-014

Acknowledgements

Linda Northrop and Paul Clements of the Software Engineering Institute, and Steve Woods
of the University of Hawaii at Manoa, provided valuable comments on early drafts of this
report.

CMU/SEI-97-TR-014 v

vi

CMU/SEI-97-TR-014

Approaches to Legacy System Evolution

Abstract: The approach that one chooses to evolve software-intensive
systems depends on the organization, the system, and the technology. We
believe that significant progress in system architecture, system
understanding, object technology, and net-centric computing make it possible
to economically evolve software systems to a state in which they exhibit
greater functionality and maintainability. In particular, interface technology,
wrapping technology, and network technology are opening many
opportunities to leverage existing software assets instead of scrapping them
and starting over. But these promising technologies cannot be applied in a
vacuum or without management understanding and control. There must be a
framework in which to motivate the organization to understand its business
opportunities, its application systems, and its road to an improved target
system. This report outlines a comprehensive system evolution approach that
incorporates an enterprise framework for the application of the promising
technologies in the context of legacy systems.

1 Introduction

As system assets become a greater proportion of an enterprise’s total assets, more
attention is being focused on the processes and technology used to build and maintain
those assets. Increasingly, software is being viewed as an asset that represents an
investment that grows in value rather than a liability whose value depreciates over time.

When systems are small and touch only a small number of an organization’s activities, it is
possible to consider redesigning and replacing a system or subsystem that can no longer
satisfy enterprise needs. But systems that grow to the extent that they touch many different
activities become substantial investments whose replacement is more difficult. Therefore, a
major issue today is how to build software assets that will provide leverage in building future
software assets. '

One of the reasons that the situation is changing so rapidly is the emergence of integrating
infrastructures. With improved integration we have seen the World Wide Web (the Web)
and electronic commerce flourish. Where once information systems were isolated and
difficult to access, they can now be accessed using the Web and interfacing software.

The Internet is being used in a number of innovative ways to connect users both inside
organizations and between organizations. Within organizations, intranets are not only being
used to connect departments such as marketing, sales, and engineering, but also to
connect teams of software developers around the world working around the clock on the
same project. Between organizations, intranets are being used to connect businesses with
their suppliers and their customers. It is becoming a medium for placing orders, receiving
delivery, and checking status.

CMU/SE!-97-TR-014 1

As a result, integration mechanisms have helped to turn software liabilities into software
assets. Managers see opportunities in software assets where once they saw only trouble.
Now they see how software can be leveraged both horizontally across their enterprise and
vertically to their customers and suppliers.

As evidence of this software renaissance, one sees attention focused on “architecture” and
“product line systems.” Just as manufacturing industries have found that they can leverage
their asset base by restricting the amount of variation in their products, the information
systems industries are learning how to develop software to serve multiple purposes by
restricting and managing the amount of variation allowed in the software. They have learned
that a core set of software assets can be effectively used as leverage to produce valuable
inventories of evolvable software application systems.

In traditional software development, systems are handcrafted as one-of-a-kind products.
Integration between systems is nontrivial, and there is little systematic reuse of assets in
other systems. On the other hand, a software product line is a set of software-intensive
systems sharing a managed set of features that address a particular market segment or
fulfill a particular mission. Substantial economies can be achieved when the systems are
developed from a common set of organizational assets. A product line approach enables
the systematic leveraging and reuse of software assets. -

The leverage of product line systems means that a variety of assets can be leveraged each
time a product is created from a product line. The items that can provide such leverage
include requirements, architectural design, components, modeling and analyses, testing,
and processes. As a result, with appropriate planning and management, there is potential
for substantial cost savings.

On the other hand, unintegrated (stovepipe) software assets that are not used for
continuous production of additional assets become stale and require more and more assets
to maintain them. Hence their value decreases over time, and eventually there may be more
cost associated with their continued maintenance than benefit from their continued use. At
that point the software becomes a liability. This concept is illustrated in Figure 1.

2 ' CMU/SEI-97-TR-014

Value of .
asset Product line systems

Stovepipe systems

Figure 1: Conceptual Value of Software Assets

New product starts should plan for systematic reuse of software assets in advance. A priori
development of systems using a product line practice approach is an active research area
and deserves continuing attention. For example see [Bass 97]. There have been cases
where a product line approach was taken out of expediency where it was known in advance
that the resources were not available to construct two similar systems [Brownsword 96].

In most contexts, however, developers are not faced with a blank slate. Rather, they are
faced with legacy systems (also known as “heritage applications”) that have developed over
many years at a substantial cost. These legacy systems represent a patchwork of
mainframe, minicomputer, and desktop applications, both centralized and distributed, under
dispersed control. Geography, database incompatibilities, and corporate mergers can
fragment them. But still there is a requirement to maximize the information system assets by
protecting, managing, integrating, and modernizing the legacy systems.

There are many ways of getting to a product line. Regardless of the starting point, the goal
is to develop higher quality systems, faster, with higher productivity and improved efficiency.
Product lines accomplish this goal by facilitating the systematic reuse of software assets.
The emphasis is on strategic, coarse-grained reuse that leverages models, architectures,
designs, documentation, testing artifacts, people, processes, and implementations.

CMU/SE!-97-TR-014 3

The purpose of this report is to focus on the difficult, real-world form of leverage, namely
starting with legacy system assets and evolving them toward a core set of product line
assets. We posit that this leveraging of legacy assets is enabled through the convergence
of a set of practices, which we try to describe at a high level in this report. The approach we
use is to elaborate on each of the following:

distinguishing between system evolution and software maintenance

using an enterprise approach for guiding decision making for system evolution
developing a technical understanding of systems at a high level of abstraction
using distributed object technology and wrapping for system evolution

using net-centric computing for system evolution

We also present credible evidence of progress and experience that supports this approach.
While the range of application for these ideas may not include all classes of systems (real-
time embedded applications may be one such exception), we believe that the applicable
scope for this approach is quite broad.

CMU/SEI-97-TR-014

2 Distinguishing Software Maintenance from System
Evolution

We first make a distinction between software maintenance and system evolution for
reengineering. We define software maintenance as a fine-grained, short-term activity
focused on (perhaps a large number of) localized changes. The Year 2000 (Y2K) problem
[Smith 97], in most cases, is an example of pervasive localized software maintenance. This
is because dates are most often handled idiosyncratically throughout the system rather than
by one single routine that is called in many places. This is precisely why the Y2K problem is
so difficult and so resistant to high-level solutions. Software will always have these low-level
maintenance requirements, and some of these changes can add value rather than merely
maintaining the value of the software.

With software maintenance, the structure of the system remains relatively constant and the
changes produce few economic and strategic benefits. There is a tendency to respond to
one software requirement at a time. There are few economies of scale that accrue from
software maintenance. There is little in the way of enhanced reuse. Only through structural
change can the software provide leverage for further development efforts. Thus we strive to
increase the asset value of software by making it capable of accepting substantive
structural changes.

System evolution is a coarser grained, higher level, structural form of change that makes
the software systems qualitatively easier to maintain. Evolution allows the system to comply
with broad new requirements and gain whole new capabilities. Instead of changing software
only at the level of instructions in a higher level programming language, change is made at
the architectural level. System evolution increases the strategic and economic value of the
software by making it easier to integrate with other software and making it more of an asset
than a liability.

Both bottom-up and top-down approaches can lead to substantive structural change. From
a bottom-up perspective, it is possible to start with a detailed code review, and build up a
new structure and a new form of documentation so that the system is qualitatively easier to
maintain [Buss 94]. Architectural extraction techniques may also start with source code
analysis [Kazman 97].

A top-down approach treats the software more as black boxes that can be reformulated for
integration with other systems, rather than white boxes that must be enhanced at a low
level. It is becoming more sensible and economical to reengineer legacy systems by
treating their components as black boxes and reinterfacing than it is to fully understand
what is inside these boxes. This black-box approach is preferred because the technology for
interfacing -and integrating is developing much faster than the technology for program
understanding. For a more detailed treatment of white-box and black-box reengineering,
see [Weiderman 97]. In Section 4 we will briefly describe white-box and black-box
technologies and their impact on system evolution. '

CMU/SEI-97-TR-014 _ . 5

It is clear that recent emphasis on architecture and product lines has shifted the focus from
software maintenance to system evolution. Systems with a well-conceived architecture allow
the software to interact across well-defined interfaces without regard for internal
implementation details. This encapsulation permits the systems to be upgraded and
enhanced at a structural level. Systems that are part of a product line family have a core set
of assets that form the basis for further development and evolution of a group of similar
systems. There is an increased emphasis on components that can interact easily with other
components.

What has received less attention than necessary in the product line work is how to make
architectural structuring and product line practices work in the context of legacy systems.
The remainder of this report will address these important issues.

6 CMU/SEI-97-TR-014

3 Using an Enterprise Approach for Decision Making

System evolution and technology insertion do not take place in a vacuum. Many attempts at
evolution and migration fail because they concentrate on a narrow set of software issues
without considering the broader set of management and technical issues. Evolution takes
place in the context of an organizational setting that varies considerably in terms of the
culture and the readiness to incorporate change. While there may be many complex
technical problems that are largely unprecedented, a focus on the technical problems to the
exclusion of the enterprise problems is a recipe for disaster. Hence it is crucial to plan for
change in the context of the enterprise.

The SEI has developed an enterprise framework for the disciplined evolution of legacy
systems [Bergey 97] as a guide for organizations planning software evolution efforts, such
as migrating legacy systems, to more distributed open environments. This framework draws
out the important global issues early in the planning cycle and provides insight and
guidance for a disciplined evolution approach.

In addition to the software engineering and technology considerations, the enterprise
approach addresses the needs of the customer, the organization’s strategic goals and
objectives, the operational context of the enterprise, as well as the current legacy systems
and their operational environment. It recognizes the central importance of both software
engineering and systems engineering (and their interplay) to the system evolution initiative.
The seven elements of the framework are shown in Figure 2.

Figure 2: A Framework for the Disciplined Evolution of Legacy Systems

CMU/SEI-97-TR-014 7

These elements are applicable to a wide class of system evolution initiatives. In practice,
the specific composition of the framework and the interrelationships between the elements
are a function of the enterprise, its culture, and it5 management and technical practices
(life-cycle activities, processes, and work products that are used to carry out the tasks
described in the project plan and migration strategy).

One of the important characteristics of the framework is its checklist of issues. The
framework does not prescribe an evolution process, but rather clearly outlines the issues.
The use of checklists provides insight into who the stakeholders and decision makers are,
and ‘what enterprise factors and work products govern the tasks and the decision-making
processes. The checklists may also surface “gray areas” in the enterprise planning, such as
how interdependent aspects of the work will be coordinated with external organizations and
customers, and how the proposed system will potentially be affected by (or affect) other
enterprise efforts that are already underway or in the planning stages.

As an example, the following questions are from the organization checklist:

e Has a common vision been developed and communicated?

e Have all three project variables—capability, schedule, and cost—been predetermined by
the organization prior to developing a project plan?

¢ Has the feasibility of evolving the legacy system been predetermined? Or the benefits?

The following questions are from the project checklist:

e Will a project team of key interdisciplinary engineers be established to serve as a
system design team? If not, how will global systems engineering issues and specialty
engineering requirements (e.g., security) be adequately addressed and coordinated?

o Does the project plan clearly describe the system evolution strategy? Are the project
team members fully supportive of the strategy?

The enterprise framework is proving to be a useful tool for probing and evaluating planned
and ongoing system evolution initiatives, for drawing out important global issues early in the
planning cycle using the checklists as a guide, and for providing insight for developing a
synergistic set of management and technical practices. In two early uses of the framework,
it was determined that the organizations’ initial perception of their problems differed from the
real problem. In one case the major enterprise deficiency was the lack of a global planning
and coordination process and effective systems engineering infrastructure. In another case
the major deficiency turned out to be the lack of a defined and repeatable process for
evaluating legacy systems to serve as a framework for identifying subsidiary tasks and
evaluation criteria.

The enterprise framework can help organizations leverage their assets in two ways. First, it
can suggest a disciplined approach pointing to some of the prerequisite skills and
infrastructure support that are required before attempting to move toward a product line
approach. Second, it can provide guidance for reusing legacy systems as a starting point for
developing reusable components for a future product family. Our plans call for expanding

8 CMU/SEI-97-TR-014

the enterprise framework to incorporate scenarios (of hypothetical migration efforts) and
experience reports of actual migration efforts and show the impact of moving to a product
line approach from an enterprise perspective. This will instantiate the framework in ways
that will make it more meaningful to users and easier to apply.

In Section 4 we describe the first step in any evolution or migration effort, namely how we
come to understand the essential characteristics of the system undergoing change.

CMU/SEI-97-TR-014 9

10

CMU/SEI-97-TR-014

4 Developing High-Level System Understanding

Program understanding is the (ill-defined) deductive process of acquiring knowledge about
a software artifact through analysis, abstraction, and generalization [Tilley 96a]. Clearly,
program understanding is a prerequisite for software evolution. However, we assert that the
nature of program understanding should change its emphasis from an understanding of the
internals of software modules (white-box reengineering) to an understanding of the
interfaces between software modules (black-box reengineering). This section will draw the
distinction between these two forms of understanding and focus on the activities necessary
for the latter. We will use program understanding for the former and system understanding
for the latter.

Understanding is critical to our ability to evolve unproductive legacy assets (e.g., obsolete,
overly constrained, or stagnating components) into reusable assets that can contribute to a
product line approach. Legacy assets may be aging software systems that are constructed
to run on various obsolescent hardware types, are programmed in obsolete languages, and
suffer from the fragileness and brittleness that results from prolonged maintenance. As
stovepipe software ages, the task of maintaining it becomes more complex and expensive,
and the software becomes more of a liability than an asset. While bottom-up program
understanding has its place, it is often the case that software and system engineers spend
inordinate amounts of time trying to reproduce the system’s high-level architecture from low-
level source code.

Legacy code can be difficult to understand for many reasons. It may have been created
using ad hoc methods and unstructured programming. It may have been maintained in
crisis mode with no updates to the higher level documentation. There may be little or no
conceptual integrity of its architecture and design. But every system has an architecture,
even if it is not written down. This architecture and high-level understanding of the structure
of the legacy system must be the focus of a system understanding effort.

Program and system understanding is a relatively immature field of research in which the
terminology and focus are still evolving. Tilley and Smith [Tilley 96a] describe three
promising lines of research: investigating cognitive aspects, developing support
mechanisms, and maturing the practice. In Sections 4.1—4.3, we give brief summaries of
how each of these lines of research should be tailored to a high-level, white-box form of
understanding necessary for more rapid and cost-effective migration.

4.1 Cognitive Aspects

The cognitive aspect of program understanding is the study of problem-solving behavior of
software engineers. Because the productivity of software engineers varies by more than an
order of magnitude, the strategies of the successful practitioners are of great interest in
producing tools and techniques that better support program understanding. Most of this
research has focused on comprehension strategies of software engineers. A

CMU/SEI-97-TR-014 11

comprehension strategy involves what information software engineers use to understand a
software artifact and how they use that information. These studies cross the disciplines of
software engineering, education, and cognitive science.

Studies show that software maintainers use a combination of strategies. They are usually a
variation of top-down understanding, bottom-up understanding, iterative hypothesis
refinement, or some combination of the three. Here is a summary of each [Tilley 96a]:

e Bottom up: Reconstruct the high-level design of a system, starting with the source code,
through a series of chunking and concept assignment steps.

e Top-down: Begin with a preexisting notion of the functionality of the system and earmark
individual components of the system responsible for specific tasks.

e [lterative refinement: Create, verify, and modify hypotheses until the entire system is
explained by a consistent set of hypotheses.

e Combination: Opportunistically exploit top-down and bottom-up cues as they become
available.

Clearly, for the high-level system understanding that we are advocating here, the second
and third approaches or a combination of them is preferred. Starting a system
understanding effort at the source code or using it as a primary technique should be
considered an option for software maintenance or for building a solid foundation for a high-
level approach. The cognitive aspects of system understanding should be focused on the
external behavior rather than the internal behavior of components. These cognitive aspects
can be supported by Web-based, computer-supported cooperative understanding (CSCU)
for teams in geographically distributed collaborative efforts. Furthermore, as cognitive
models are developed, the codified knowledge should take the form of systems evolution
handbooks for capturing expertise that has been effective for general and specific systems
evolution scenarios. Such handbooks could provide prescriptive solutions to common
problems.

4.2 Developing Support Mechanisms

Computer-aided support mechanisms are needed to help software engineers in their system
understanding tasks. But rather than helping software engineers to extract high-level
information from low-level code, these support mechanisms should focus on extractihg
interface definitions from the program specifications. Reverse engineering is a process of
examination and reconstruction. Its canonical activities are data gathering, knowledge
management, and information exploration (including navigation, analysis, and presentation)
[Tilley 96b].

Data gathering can often go astray by taking an automated brute-force approach to static
and dynamic analyses starting with the source code. Constructing abstract syntax trees with
a large number of fine-grained syntactic artifacts and dependencies does not scale up

12 CMU/SEI-97-TR-014

easily because the algorithms are non-linear in the number of nodes of the system. For
system understanding (as opposed to program understanding), reverse engineering should
attack the user interfaces and the system interfaces. The best source of data for the user
interface may be the user manuals, if they are up to date and accurate. The best source of
information for system interfaces may be the descriptions of the APIs (application
programmer interfaces). As more systems become object oriented, these APIs will become
more ubiquitous and make the data gathering easier and more straightforward.

It should be noted that the explosive growth of both the Internet and the Web are making it
possible for program and system understanding technology to be delivered to practitioners
in a familiar form (Web-based interfaces). By using extended markup language (XML) as
the basis for a common intermediate form, many of the capabilities of the Web can be
leveraged for use in reengineering. Examples of such capabilities include search engines,
visualization tools, and integration mechanisms [Tilley 97a].

4.3 Maturing the Practice

As we shift the focus from program understanding to system understanding, from software
maintenance to system evolution and migration, and from bottom-up techniques to top-
down techniques, the prospects for widespread adoption will improve. One of the
impediments to greater adoption of program understanding technology has been that this
technology has been focused on toy programs that do not represent real-world legacy
systems (although the current interest in the Y2K has rapidly changed this situation for the
better). System understanding must be integrated with the other technologies described in
this report, namely the Internet, distributed object technology, and net-centric computing.

One tool that addresses the need to be able to extract information from existing system
implementations and reason architecturally about this information is called Dali [Kazman
97]. Dali is an open, lightweight workbench that aids an analyst in extracting, manipulating,
and interpreting architectural information. Although Dali extracts information automatically
from source code, it is an interactive system that assists the user in forming and interpreting
the architectural information. It relies heavily on user input to extract a description of the
architecture. The researchers realized that the automated approach had been tried before
and had failed. Hence Dali supports the user in defining architectural patterns and in
matching those patterns to extracted information. While Dali is in an early prototype stage, it
is in systems like these that we find the most promise for system understanding in
producing evolving systems that can form the basis for product lines.

The research in system understanding should de-emphasize the fine-grained, bottom-up,
exhaustive, computationally intensive techniques in favor of coarse-grained, top-down,
targeted analysis. They must carefully study the numerous successes that have been
recently documented using distributed object technology (e.g., see [Weiderman 97]). There
is also room for small-scale experimentation with large-scale problems. The technology now

CMU/SEI-97-TR-014 13

facilitates the integration of large-scale systems using net-centric computing, distributed
object technology, and middleware as is described in Sections 5 and 6.

14 CMU/SEI-97-TR-014

5 Distributed Object Technology and Wrapping

The approaches to the evolution of legacy systems are being dramatically changed by
distributed object technology and wrapping. Traditionally, the approach taken for legacy
systems reengineering has been to understand a system’s structure and to extract its
essential functionality so the whole system or a series of pieces of the system could be
transformed into a more evolvable system over the long term. But distributed object
technology is dramatically changing the nature and economics of legacy system
reengineering in two important ways.

The first impact is the new approach to reengineering that distributed object technology
offers. Traditional reengineering is based on “deep” program understanding and reverse
engineering. The cost/benefit ratio of this approach is staying the same in the face of new
technologies such as Common Object Request Broker Architecture (CORBA), Java, and
the Web. However, the benefits of “shallow” interface understanding and component
wrapping using these distributed object technologies are rising rapidly relative to the
replacement cost. As a result, the economic balance is changing from traditional
transformation-based reengineering to wrapper-based reengineering. This may have a
significant impact on many organizations struggling with updating their systems.

The second impact is on the reengineering of systems that are built using distributed
objects. Current research is primarily focused on using static analysis techniques to
reengineer monolithic systems. This approach may not be successful when applied to
distributed systems built from off-the-shelf components that are essentially black boxes.
New analysis techniques may be required to reengineer such systems. For example, binary
reverse engineering, interface behavior probing, and protocol analysis may be more useful
in understanding the nature of such a system.

5.1 How Object Technology Provides Leverage

Object technology (OT) has made slow, but steady, progress in influencing the course of
software development since it was introduced in the late 1970s. In the object-oriented
model, systems are viewed as cooperating objects that encapsulate structure and behavior
and that belong to hierarchically constructed classes. While the benefits of object-oriented
technology have been demonstrated, and most new systems are being constructed using its
principles, the transition from more traditional structured approaches can certainly not be
considered complete, nor has OT been fully exploited, especially in legacy systems that
predated objects. But OT is maturing rapidly and is well accepted as a technology that
addresses complexity, improves maintainability, promotes reuse, and reduces life-cycle
costs of software.

Objects increase leverage because of encapsulation and information hiding. They expose
the interfaces of software modules while hiding their implementation details, so that they are
more easily employed as reusable components. Objects exist at many levels of abstraction.

CMU/SEI-97-TR-014 15

At fine-grained levels, objects can be used to create data structures such as lists, trees, and
graphs that have known behaviors. At mid-grained levels, objects represent more
sophisticated functions with APls for using them. At coarse-grained levels, objects can take
the form of servers which are accessed by clients who know only the system interface.
These client/server systems often are used for hiding the details of accessing a database.
Object-oriented systems provide leverage by enabling reuse. While early attempts at
capitalizing on the leverage of OT focused on fine-grained reuse, more recent efforts have
found that the real leverage comes from reuse at the architectural coarse-grained level of
systems and subsystems. '

5.2 How Distributed Object Computing Provides Leverage

As object technology became more popular through the 1980s, there was more interest in
bundling the concept of objects with the concept of transparent distributed computing.
Objects, with their inherent combination of data and behavior and their strict separation of
interface from implementation, offer an ideal package for distributing data and processes to
end-user applications. Objects became an enabling technology for distributed processing.
Laddaga and Veitch [Laddaga 97] address the leverage of distributed objects for legacy
systems by saying they are “specifically designed to support rapidly changing software with
cost proportional to that of the change, rather than the size of the entire application.”

Distributed object computing (DOC) is the application of OT to distributed environments,
i.e., muftiple autonomous computers that are connected by a network and have no shared
physical memory. The advent of smaller, more powerful, and less expensive computing
engines has precipitated an interest in moving applications from mainframes and
minicomputers to PCs and workstations, and in distributing functionality over multiple
communicating computers. Over time, the notion of distribution has generally migrated from
tightly coupled, geographically close, homogeneous machines to more loosely coupled,
geographically remote, heterogeneous machines.

Early distributed systems employed a client/server model where computations on one
machine (the client) invoke computations on another machine (the server) in a manner often
viewed as a remote procedure call (RPC). The server process is a provider of services; the
client is a consumer of services. The client/server model is concerned primarily with the
problems of distributing function across local and wide area networks through devices such
as pipes and sockets. The client/server model has evolved from one in which the client was
" a terminal accessing a server (usually a mainframe) in its first generation, to an intelligent
“fat client” workstation accessing a server with less capability in its second generation, to a
“three-tier” model as show in Figure 3. The three-tier model has clients that can be relatively
thin in tier 1 communicating with a Web server and business objects in tier 2, which in turn
communicate with legacy assets in tier 3. There are many variations on this theme, but the
middle tier introduces the distributed object layer.

16 CMU/SEI-97-TR-014

Loosely Coupled, Geographically Remote, Heterogeneous Platforms and Operating Systems

Tier 1 Tier 2 Tier 3
End User Clients Distributed Object Legacy Systems
— Layer ”Dat o,

GUls and End User Applications " Middleware . Legacy éystém Assets

Figure 3: The Distributed Object Computing Paradigm

DOC provides additional leverage over OT by making objects available everywhere —
across heterogeneous platforms and networks. No longer must two programs sharing an
object be on the same system or part of a closely coupled client/server system. They may
be on separate machines, running different operating systems, in different parts of the
world. Objects are easier to share not only within a project, but within a division, an
enterprise, and across enterprises. Enterprises can make their objects available to their
employees, their customers, their suppliers, and in all other business relationships. In short,
the ability to have objects everywhere creates tremendous leverage for both the enterprise
- and software developers.

Software architecture and product lines are concerned with design abstractions for system-
level structure. By system-/eve/ we mean something larger than a single computer program.
The significance of making distribution extensions to OT is that software designers and
maintainers have at their disposal the means of expressing abstract system designs and,
more importantly, have tools for quickly fabricating working versions of these designs. That
is, there is a more direct path now than ever before from abstract architectural concepts to
concrete implementation of these concepts using DOC.

CMU/SEI-97-TR-014 17

5.3 Using Wrapping and Middleware as Integration Mechanisms

Most DOC projects involve the use of middleware technology. Middleware is defined as
- “connectivity software that consists of a set of enabling services that allows multiple
processes running on one or more machines to interact across a network [Foreman 97].”
Middleware, sometimes known as glue, facilitates integration of components (objects) in a
distributed system. While the details of these technologies vary considerably, middleware
products usually provide a run-time infrastructure of services used by components to
interact with each other. The focus of middleware has been to make the computing
environment increasingly transparent with respect to the locus of both the computing
engines and the objects of computing.

Middleware can take the following forms [Foreman 97]:

e Transaction processing (TP) monitors, which provide tools and an environment for
developing and deploying distributed applications.

¢ Remote procedure calls, which enable the logic of an application to be distributed across
the network. Program logic on remote systems can be executed as simply as calling a
local routine.

¢ Message-oriented middleware (MOM), which provides program-to-program data
exchange, enabling the creation of distributed applications. MOM is analogous to email
in the sense that it is asynchronous and requires the recipients of messages to interpret
their meaning and to take appropriate action.

o Object Request Brokers (ORBs), which enable the objects that constitute an application
to be distributed and shared across heterogeneous networks.

In the early 1990s an international trade association called the Object Management Group
(OMG) defined a standard for the distribution of objects [OMG 97a]. The OMG defined
CORBA, which provided a standard by which OT could be used in distributed computing
environments. The latest version of this standard, CORBA 2.0, addresses issues related to
interface, registration, databases, communication, and error handling. When combined with
other object services defined by OMG’s Object Management Architecture (OMA), CORBA
becomes a middleware that facilitates full exploitation of object technology in a distributed
system.

CORBA is concerned with interfaces and does not specify implementation; CORBA is a
standard for which there are many (more than a dozen at present) current products referred
to as ORBs. The OMG sponsors a permanent showcase on the Web to demonstrate the
interoperability between ORBs from various vendors according to the CORBA 2.0
specification [OMG 97b]. The major ORB product that is not compliant with CORBA is
Microsoft's Distributed Component Object Model (DCOM). In addition to CORBA product
offerings, we are now seeing product sets offering complete integration solutions for a wide
range of fragmented legacy applications [Bracho 97].

18 CMU/SEI-97-TR-014

There are many ways that middleware can be employed for wrapping. One way of
classifying wrapping is to relate it to the nature of the mismatches (underlying assumptions)
that are being addressed by the wrapping. Middleware can address mismatches of the
underlying environment (hardware, operating system, programming language), mismatches
in the underlying database model, mismatches in the functional requirements, and
mismatches in how components interact with one another. At the Software Engineering
Institute attention has been focused on exploring repair strategies centered on the
coordination class. Summaries of three example prototype wrapping exercises using
CORBA are contained in [Wallnau 97].

5.4 Examples of Successful Legacy Evolution

One example of a successful legacy evolution is Wells Fargo Bank’s online electronic
banking system. Wells Fargo started offering real-time access to account balances via the
Web starting in May 1995 and has since expanded those services to include transferring
funds, seeing cleared checks, examining credit card charges and payments, downloading
transaction files, requesting service transactions, and paying bills [Wells Fargo 97]. The
system has 100,000 enrolled customers and was handling 200,000 business object
invocations per day as of early 1997 [Townsend 971].

Wells Fargo has accomplished this by leaving their legacy systems largely untouched while
adding CORBA middleware to create a three-tiered client server system. The “customer”
object and the “account” object allow the definition of a customer relationship whereby the
client can first get all information about the customer’s relationship with the bank and then,
for each account owned by the customer, get the relevant summary information. Wells
Fargo found that the key to enabling reuse of legacy systems was in having, maintaining,
and sharing a well-architected enterprise object model.

The centerpiece of each monthly issue Distributed 'Objecf Computing magazine is a
deployed case study such as Wells Fargo. They describe the development, the business
case for building and deploying the application, the laundry list of technology used on the
project and, when available, the staffing and deployment information. In their first eight
issues, they have featured a Web-based banking system, an airline reservation system, a
criminal justice suspect index system, a newsmedia system to provide personalized news
and digital content, a 911 emergency response system, a management information system
for monitoring and directing large projects, an electric power exchange system for the
electric power industry, and an information system for a utility company. In most cases
these development efforts made heavy use of legacy software assets.

As an example of the leverage provided by technologies such as CORBA and Java, Allied
Signal Engines, a business unit of Allied Aerospace, has reported cost savings of $750,000
per new application [Gill 97]. This was accomplished by moving to component-based
software architecture and by outsourcing a major portion of the actual coding effort to an
offshore development company in India. Their wide-ranging development efforts were made

CMU/SEI-97-TR-014 19

possible, at least in part, by the network-centric computing models that will be described in
Section 6.

20 CMU/SEI-97-TR-014

6 Net-Centric Computing

As is evident from the examples cited in the previous section, the Net' is causing a
fundamental change in both the nature of enterprise applications and the development
methods used to create them. The Net, and in particular the Web, is evolving into a
ubiquitous, distributed, platform-independent, peer to peer, collaborative computing platform
for software applications. The concept of “the network is the computer” is based on the
premise that the Net provides a combination virtual disk drive for storage, powerful
processors for computation, and executable content that permits the global execution of
software applications irrespective of their physical location, their implementation language,
or their operating system. The value of the Net to software engineering must be recognized
and exploited. The promise of product line practice will not be fully achieved unless this
medium is used to its fullest capabilities.

6.1 What Is Net-Centric Computing?

The explosion of interest in the Web has given rise to many new developments. One of
them is net-centric computing (NCC). The underlying principle behind NCC is a distributed
environment where applications and data are downloaded from network servers on an as-
needed basis [Tilley 97b]. This is in stark contrast to the current use of powerful personal
computers (PCs) that rely primarily on local resources. In some respects, NCC resembles
an earlier computing era of mainframes and dumb terminais. However, there are important
differences. NCC relies on portable applications than run on multiple architectures (write
once, run anywhere), high bandwidth (for downloading applications on demand), and low-
cost “thin clients.”

Thin clients come in a variety of guises. Some may be traditional display-based terminals
with no local processing. Examples of these very thin clients include X stations and the so-
called Windows Terminal. Another type of thin client is a Java-based network computer
(NC) that supports local processing. A third class of thin client is the Windows-based
NetPC, which may also support Java. The proliferation of plug-ins that enable one type of
client to access or emulate another, such as running a Windows NT session inside a Java
applet on a NC, makes the distinction between different types of thin clients somewhat
problematic at times.

The influence of NCC on software evolution can be summarized in three words: universality,
ubiquity, and accessibility. Universality is provided by portable executable content, such as
Java applets, which runs on multiple platforms and operating systems. Making established
user interfaces, such as Web browsers, available on almost any client provides ubiquity.

! The term Ner as used here includes the Internet (the global computer network), intranets (local networks that

are usually isolated from the Internet by a firewall), and extranets (extensions of an intranet into the Internet in a
secure manner).

CMU/SEI-97-TR-014 27

Making vast quantities of corporate data, which previously were inaccessible in mainframe-
based databases, available on the Net to the ubiquitous client software, provides
accessibility.

6.2 How Net-Centric Computing Provides Leverage

One of the primary drivers of NCC is economics. Because applications and data are
downloaded from servers on demand, there is a potential reduction in the cost and
complexity for system administrators in managing a corporate network. Maintenance can be
done at one central location rather than at thousands of sites in the organization, thereby
reducing total cost of ownership (TCO). The tradeoff is that end users lose control of the
ability to customize their local machines. However, they may gain significantly by increasing
their productivity in their primary tasks by not being responsible for application installation,
system administration, and troubleshooting tasks. Thus, NCC leverages system
administration resources.

NCC can also leverage software assets in a number of ways by making them available over
the Net. Since legacy application code is normally platform dependent, one must choose
whether to use white-box reengineering techniques such as reverse engineering to redesign
and rewrite the system, or to use black-box reengineering techniques such as DOT and
wrapping. Reverse engineering can often be prohibitively expensive, so a variety of
wrapping schemes may be used, as described in the following paragraphs.

In the simplest form, just the user interface might be changed. Instead of accessing the
enterprise database through an idiosyncratic user interface, the database can be accessed
through a Web browser. This transition has been accomplished many times by many
organizations and, by now, should no longer be considered a high-risk, unprecedented form
of software evolution. Many enterprise-wide intranets have taken this approach without
significantly changing the underlying software base.

The next level of complexity involves partitioning the application into separate components
so that the new version of the system can operate in a traditional client/server manner.
Once this step has been taken, the software is better able to evolve the individual parts into
a reusable set of components that can provide the basis for a product line. In the first case
(changing the interface), the business benefits from the universality, ubiquity, and
accessibility, but does not reap the rewards of business process reengineering (BPR). In
the second case (partitioning), the leveraging of assets and return on investment becomes
paramount.

In the third level of complexity, the application is restructured from a two-tiered client/server
application into an r+tiered set of interacting components. Each component may reside on a
client, a server, or it may migrate between them (in effect, a component serves multiple
roles). Data may also be made similarly mobile. This arrangement provides the greatest
flexibility for future evolution and gains maximum leverage from the NCC environment.

22 CMU/SEI-97-TR-014

Finally, NCC can leverage legacy data in several ways. For example, through the Java
database connectivity specification (JDBC), Java applications can access SQL databases in
a manner similar to other applications that use object database connectivity (ODBC)
services. Java applications can also access non-Java programs through a variety of client
software. There are various tradeoffs between thinner and fatter clients. Thinner clients
work better for users who perform repetitive tasks, for mobile knowledge workers sharing
desktops, for remote workers who are difficult to support, for situations where security is
important, and for replacing aging text-based terminals. Fatter clients work better for
developers who rely on local processing power and where central administration would not
be welcomed or appropriate. The trend seems to be toward thinner clients. They have been
installed by the thousands in many information systems applications such as banks, retail
stores, telemarketing applications, and overnight delivery applications. The use of thinner
clients often must be accompanied by upgrades to the network and the servers that are
being used.

6.3 Examples of Successful Use of Net-Centric Computing

Examples of the use of NCC technology to evolve legacy systems are abundant. The typical
approach taken is to evolve the legacy system into a Web-centric computing (WCCQC)
application (a “weblication”). WCC is a subset of NCC where a Web browser is used as the
primary means of accessing legacy applications and data. In contrast, NCC applications can
make use of other types of thin clients as well, as discussed above.

In a series of studies, International Data Corporation has conducted four in-depth economic
analyses at major corporations. These well-documented studies show a return on
investment averaging well over 1000 percent [Campbell 96]. They emphasized three
themes: rapid deployment on heterogeneous platforms, widespread acceptance and use
due to the ease of using the browser technology, and the realization of the promise of
openness and the ability to replace components at will. In all cases, the use of intranets
enabled the companies to take advantage of new enterprise strategies. The studies were
conducted at Cadence Design Systems, Inc.; Booz, Allen & Hamilton; Silicon Graphics, Inc.;
and Amdahl Corporation.

CMU/SEI-97-TR-014 23

24

CMU/SEI-97-TR-014

7 Summary and Conclusions

The approaches to software evolution are changing rapidly along with the changing
technology. The changing technology is pushing the evolution of systems in several ways.
Two approaches to software evolution appear to be on the decline. First, it is rarely
possible, because of huge investments in legacy systems that have evolved over many
years, to replace those systems and start from scratch. So the “big bang” approach to
software migration is not often feasible. Second, it is increasingly less attractive to continue
maintaining traditional (functional) legacy systems at the lowest level of abstraction,
expecting them to evolve into maintainable assets. So the fine-grained maintenance
approach is also undesirable because it neither adds value to the asset nor provides for
future leverage.

The recommended new approach for systems evolution has been described in the previous
sections and can be summarized as follows:

¢ Understand the goals and resources of the enterprise with respect to a system evolution
project. Use a software evolution framework to plan a disciplined system evolution.

¢ Understand the legacy system at a high level of abstraction using system understanding
technology, paying particular attention to interfaces and abstractions. Find the
encapsulatable components of the legacy system on which to build.

e Consider middleware and wrapping technologies for encapsulating subsystems and
creating distributed objects that form the basis for product line systems. Apply those
technologies in accordance with the framework.

o Consider using the Web for expanding the scope of the legacy system and as a
development tool. Capitalize on the universality, ubiquity, and access that the Web
provides.

e Develop a concept of operations for the goals that you want to strive towards, and
develop an incremental implementation strategy for evolving towards that goal. Having a
goal and a strategy simplifies the problems associated with transitioning the new system
into operational use (by breaking it down into manageable and predictable “chunks”) and
allows for mid-course corrections based on actual field experience and customer/user
feedback.

As is so often the case in software engineering, this approach to software evolution raises
the level of abstraction so that our resources are being used more effectively. Economic
realities are pushing us from low-level maintenance activities to high-level transformations.
A focus on architecture and product lines is facilitating large-scale reuse in construction,
where before we were satisfied with small-scale reuse.

The use of these new approaches is still somewhat risky and advanced, but by no means
unprecedented. They have been employed in prototypes, tested in small systems, and used
to transform large systems. Useful and production-quality tools are now available. New
developments are occurring at “Internet speed.” Enterprises that ignore or delay the
introduction of the new technologies do so at their peril.

CMU/SEI-97-TR-014 25

26

CMU/SEI-97-TR-014

References

[Bass 97]

[Bergey 97]

[Bracho 97]

[Brownsword 96]

[Buss 94]

[Campbell 96]

[Foreman 97]

[Gill 97]

[Kazman 97]

[Laddaga 97]

Bass, Leonard; Cohen, Sholom; Northrop, Linda; & Withey, James.
Product Line Practice Workshop Report (CMU/SEI-97-TR-003, ADA
327610). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1997.

Bergey, John; Northrop, Linda; & Smith, Dennis. Enterprise
Framework for the Disciplined Evolution of Legacy Systems
(CMU/SEI-97-TR-007, ADA 330880). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1997.

Bracho, Rafael. Infegrating the Corporate Computing Environment
with ActiveWeb. Active Software, Inc., Santa Clara, CA. Available
WWW <URL: http://www.activesw.com> (1997).

Brownsword, Lisa & Ciements, Paul. A Case Study in Successful
Product Line Development (CMU/SEI-96-TR-016, ADA 315802).
Pittsburgh, PA: Software Engineering Institute, Carnegie Melion
University, 1996.

Buss, E. et al. “ Investigating Reverse Engineering Technologies for
the CAS Program Understanding Project.” /1BM Systems Journal 33, 3
(1994): 477-500.

Campbell, lan. The Intranet: Slashing the Cost of Business.
Framingham, MA: International Data Corp., 1996.

Foreman, John; Brune, Kimberly; McMillan, Patricia; & Rosenstein,
Robert. Software Technology Reference Guide - A Prototype
(CMU/SEI-97-HB-001, ADA 305472). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1997.

Gill, Philip J. “CORBA Proves lts Value.” Object Magazine 7, 8
(October 1997): 10-11.

Kazman, Rick & Carriere, S. Jeromy. Playing Detective:
Reconstructing Software Architecture from Available Evidence.
(CMU/SEI-97-TR-010, ADA 315653). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1997.

Laddaga, Robert & Veitch, James. “Dynamic Object Technology —
Introduction.” Communications of the ACM 40, 5 (May 1997): 38-40.

CMU/SEI-97-TR-014

27

[OMG 97a]

[OMG 97b]

[Smith 97]

[Tilley 96a]

[Tilley 96b]

[Tilley 97a]

[Tilley 97b]

[Townsend 97]

[Walinau 97]

[Weiderman 97]

Object Management Group. Welcome to OMG’s Home Page [online].
Available WWW <URL: http://www.omg.org/> (1997).

Object Management Group. CORBAnet — The ORB Interoperability
Showcase [on-line]. Available WWW <URL: http://www.corba.net/>

(1997).

Smith, Dennis; Muller, Hausi; & Tilley, Scott. The Year 2000 Problem:
/ssues and Implications (CMU/SEI-97-TR-002, ADA 325361).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1997.

Tilley, Scott & Smith, Dennis. Coming Attractions in Program
Understanding (CMU/SEI-96-TR-019, ADA 320731). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1996.

Tilley, Scott; Paul, Santanu.; & Smith, Dennis. “Toward a Framework
for Program Understanding,” 19-28. Proceedings of the 4th Workshop
on Program Comprehension. Berlin, Germany: March 29-31, 1996.
IEEE Computer Society Press, 1996.

Tilley, Scott & Smith, Dennis. “On Using the Web as Infrastructure for
Reengineering,” 170-173. Proceedings of the &th Workshop on
Program Comprehension. Dearborn, Michigan: May 28-30, 1997.
IEEE Computer Society Press, 1997.

Tilley, Scott & Story, Margaret-Anne. Report of the STEP 97
Workshop on Net-Centric Computing (CMU/SEI-97-SR-016, ADA
330926). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1997.

Townsend, Erik S. “Wells Fargo’s ‘Object Express’.” Distributed Object
Computing 1, 1 (February 1997): 18-27.

Wallnau, Kurt; Weiderman, Nelson; Northrop, Linda. Distributed
Object Computing with CORBA and Java: Key Concepts and
Implications (CMU/SEI-97-TR-004, ADA 327035). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1997.

Weiderman, Nelson; Northrop, Linda; Smith, Dennis; Tilley, Scott; &
Wallnau, Kurt. /mplications of Distributed Object Computing for
Reengineering. (CMU/SEI-97-TR-005, ADA 326945). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1997.

28

CMU/SEI-97-TR-014

[Wells Fargo 97]

Wells Fargo Bank. Wells Fargo’'s WWW Homepage [online].'AvaiIabIe
WWW <URL.: http://www.wellsfargo.com> (1997). '

CMU/SEI-97-TR-014

29

30

CMU/SEI-97-TR-014

REPORT DOCUMENTATION PAGE OME Mo, 07040168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1997 Final
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

, C — F19628-95-C-0003
Approaches to Legacy System Evolution

6. AUTHOR(S)

Nelson H. Weiderman, John K. Bergey, Dennis B. Smith, Scott R. Tilley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Cgrnegie Mellon University CMU/SEI-97-TR-014
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESC/AXS AGENCY REPORT NUMBER
5 Eglin Street ESC-TR-97-014

Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT 12.B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)

The approach that one chooses to evolve software-intensive systems depends on the organization, the system, and the
technology. We believe that significant progress in system architecture, system understanding, object technology, and
net-centric computing make it possible to economically evolve software systems to a state in which they exhibit greater
functionality and maintainability. In particular, interface technology, wrapping technology, and network technology are
opening many opportunities to leverage existing software assets instead of scrapping them and starting over. But these
promising technologies cannot be applied in a vacuum or without management understanding and control. There must be
a framework in which to motivate the organization to understand its business opportunities, its application systems, and
its road to an improved target system. This report outlines a comprehensive system evolution approach that incorporates
an enterprise framework for the application of the promising technologies in the context of legacy systems.

14. SUBJECT TERMS 15. NUMBER OF PAGES

30
legacy system evolution, distributed object technology, net-centric computing, program

understanding, reverse engineering, reengineering

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

